
Use of mathematical derivatives (time-domain differentiation)
on chromatographic data to enhance the detection and

quantification of an unknown ‘rider’ peak

S.J. Ford *, M.A. Elliott, G.W. Halbert

Cancer Research UK Formulation Unit, Department of Pharmaceutical Sciences, University of Strathclyde, 204 George Street,

Glasgow, Scotland G1 1XW, UK

Received 16 January 2003; received in revised form 26 May 2003; accepted 28 May 2003

Abstract

Two samples of an anticancer prodrug, AQ4N, were submitted for HPLC assay and showed an unidentified impurity

that eluted as a ‘rider’ on the tail of the main peak. Mathematical derivatization of the chromatograms offered several

advantages over conventional skimmed integration. A combination of the second derivative amplitude and simple

linear regression gave a novel method for estimating the true peak area of the impurity peak. All the calculation steps

were carried out using a widely available spreadsheet program.
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1. Introduction

‘Rider’ peaks appear in a chromatogram when a

small detected band is incompletely resolved from

a larger peak. The term usually refers to peaks,

which elute on the tail of a main peak. The

accurate characterisation and quantification of

rider peaks is known to be difficult and several

alternatives have been investigated. Triangular/

perpendicular methods and valley-to-baseline for

rider integration are known to be prone to errors

[1,2]. The popular tangential (skimming) method

requires careful selection of the baseline end points

[3], however, significant errors can still occur [4,5].

The use of mathematical deconvolution of the

chromatographic data has been studied [6] as have

2D calibration techniques [7].

Chromatographic data is derivatized as part of

the peak integration process [1,3] and the use of

derivative chromatography for the quantification

of closely eluting peaks of similar magnitude has

been studied previously [8,9]. Theoretical calcula-

tions have showed good results for peak area

ratios between 100 and 10% [10]. Grushka and co-

workers have used the second derivatives of

theoretical peaks over a wide range of relative

peak areas to determine the start and stop points

for skimmed integration [11,12]. Fully resolved
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second derivative curves have been shown to occur
in theoretical Gaussian systems at ‘rider’ peak

areas of 0.01% [11].

The Cancer Research UK Formulation Unit

was provided with two samples of a new anti-

cancer prodrug, AQ4N (1,4-bis[2-(dimethylami-

no)ethyl] amino-5,8-dihydroxyanthracene-9,10-

dione-bis-N -oxide) [13], for the purposes of for-

mulation and analytical development. During
HPLC assay development a small unknown im-

purity (nominally labelled Impurity D) eluted as a

rider on the tail of the main peak. The level of

Impurity D varied slightly between the samples.

We were not able to improve the resolution of the

parent compound and Impurity D peaks: the

developed HPLC assay method appeared to give

the optimal separation. These investigations were
hampered by the lack of an appropriate standard

and the low Impurity D content in the AQ4N

samples. There was no discernable difference in the

UV profiles of AQ4N and Impurity D.

This study investigates the use of second deri-

vatives of experimental data to obtain quantitative

information on a ‘rider’ peak. The work confirms

previous theoretical predictions of the advantages
that second derivatives offer and the high errors

associated with ‘skimmed’ integration. Further-

more, a novel analysis is carried out where the

second derivative information is used as a ‘marker’

for rider concentration allowing linear regression

of the chromatographic traces and prediction of an

appropriate baseline. This is done by compara-

tively simple calculations within a spreadsheet
program widely available on computer-based

HPLC systems.

2. Experimental

2.1. Chemicals

HPLC grade reagents and solvents were used

throughout. Two samples of AQ4N �/2HCl (nom-

inally labelled samples ‘A’ and ‘B’) were provided

by BTG in collaboration with Denny (Auckland

Cancer Society) [14].

2.2. Chromatography

The chromatographic analysis was carried out

on a TSP HPLC system (ThermoFinnigan, Hemel

Hempstead, UK), consisting of a SM4000 four line

vacuum degasser, P2000 binary gradient pump,

A1000 autosampler and a UV1000 detector inte-

grated via a SN4000 SpectraNet module with a PC

(Dell Optiplec Gm) running HPLC acquisition
software PC1000 (version 3.0.1). The HPLC system

is calibrated on a bi-annual basis.

Mobile phase A consisted of 0.1% (v/v) trifluor-

oacetic acid in water�/acetonitrile (75:25, v/v).

Mobile phase B was acetonitrile. The gradient

used was 100% A for 10 min, with a linear gradient

to 100% B at 20 min followed by a 16 min

equilibration period. The column was a Phenom-
enex (UK) Luna C8(2) (5 mm, 150�/4.6 mm)

dedicated to the AQ4N HPLC assay. The flow rate

was 1 ml/min, with an injection volume of 20 ml.

The UV detection wavelength was 245 nm. Each

sample was injected in triplicate.

The integration of the Impurity D peak was

carried out used the ‘Rider’ integration option in

the PC1000 software. The start and end points of
the baseline were chosen manually according to

the guidelines suggested by Dyson [3]. Chromato-

grams were exported as comma separated (CSV)

files under the PC1000 Data Maintenance program

using start/stop times of 4.3/5.5 min and a data

interval of 1.

2.3. Sample preparation

Samples A and B were prepared at 0.2 mg/ml in

sodium orthophosphate buffer (pH 7.0, 10 mM).

Mixtures of these two samples were prepared using
calibrated Gilson variable volume pipettes in the

following proportions: 100A:0B, 75A:25B,

50A:50B, 25A:75B and 0A:100B.

2.4. Computational calculations

All the computational calculations were carried

out using Microsoft EXCEL 98 (Macintosh Edi-

tion). Second derivative amplitude maxima, linear

regression and calculation of S.D. were all carried
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out using the appropriate functions within the
spreadsheet.

2.5. Differentiation calculations

The derivatization of the chromatography data

was carried out using a simple Savitzky�/Golay

series for the second derivative of a quadratic/

cubic polynomial over 11 points [15]. The equation

used to obtain the second derivative was as

follows:

yƒ��
1

429Dt2

� (15yi�5�6yi�4�yi�3�6yi�2�9yi�1

�10yi�9yi�1�6yi�2�yi�3�6yi�4

�15yi�5)

where yƒ, second order derivative of the chroma-

togram at point yi ; Dt , time interval; and yi�5 to

yi�5, consecutive points on the chromatogram.

This particular series of Savitzky�/Golay para-

meters were chosen since a quadratic is the

minimum order equation required to obtain a

second derivative, while eleven points provided the
optimum smoothing for the data points con-

cerned. Prior to the application of the Savitzky�/

Golay algorithm, initial data bunching was carried

out as an averaging process of six sequential

datapoints, this generated a single time point every

0.005 min. This reduced the size of the subsequent

spreadsheets and acted to smooth the data. A

simpler, but more cumbersome, stepwise numer-
ical derivatization process of consecutively calcu-

lating the gradient of a slope between adjacent

points was also assessed; it generated equivalent

results to the Savitzky�/Golay process but required

an additional averaging step and larger spread-

sheets.

A typical second derivative curve would contain

two maxima and one minimum. For the rider
peaks shown here the low retention time maximum

is obscured by the signal from the main peak. All

the second derivative amplitude results come from

the high retention time maximum of the Impurity

D curve (indicated by the arrow in Fig. 2) where

the interference from the main peak is minimized.

2.6. Theoretical calculations

The Gaussian equation used to describe model

chromatographic peaks is as follows [2]:

h(t)�
A

s
ffiffiffi
2

p
p

exp

�
�(t � tR)2

2s2

�

where, h (t), peak height at time t ; A , total peak

area; tR, time at peak maximum (retention time),

and s , S.D. of the peak.

The theoretical model of the peak complex was

generated by the addition of two Gaussian func-

tions. The total peak area values (A ) were selected

so that the ratio of the A values reflected the

approximate peak area ratio determined experi-

mentally. The total peak area values for rider peak

were varied to investigate the response of the

second derivative amplitude. The tR values were

set to the retention times of the main peak and

Impurity D and the s values were optimised to

generate a peak complex, which visually repre-

sented the experimental traces. The dimensionless

Gaussian parameters are shown in Table 1. The

theoretical data was processed in the same way as

the experimental data described above without the

initial bunching operation.

Skimmed integration of the theoretical peak

complex was carried out in the Excel spreadsheet

by selecting two ‘baseline’ points on the curve and

fitting a straight line. Peak areas were calculated

by subtracting a baseline from the curve, multi-

plying by time interval and summing over the

relevant range.

Table 1

Gaussian parameters for the theoretical curves

Parameter Values for Peak 1 Values for Peak 2

A 10 000 10, 20, 30, 40, 50

tR 4.0 4.7

s 0.16 0.15
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3. Results and discussion

3.1. Skimmed integration and second derivative

results

A typical chromatogram of the AQ4N and

Impurity D peak in Sample B is shown in Fig. 1.

The Impurity D peak and its corresponding

second derivative trace are shown in Fig. 2.

The mean and S.D. values for peak areas given

by skimmed integration and second derivative
amplitude of Impurity D peak against sample

mixture composition are shown Fig. 3. The

equivalent mean values for theoretical peak areas

against the rider peak area parameter (A ) are

shown in Fig. 4. The parameters generated by

linear regression of all four sets of data are shown

in Table 2.

The experimental and theoretical results show
similar trends. The non-linear results from the

peak area data originate from the invalid use of

straight ‘baseline’ in a situation where the peak

clearly sits on top of a ‘curved’ background. The

non-linear response for the skimmed peak area

suggests that even if an Impurity D (or other rider)

standard were available, a standard additions

approach to quantification would generate erro-
neous results. The theoretical results show that the

skimmed integration method severely underesti-

mates the actual peak area as found previously [3�/

5].

The second derivative data suggests that Sample

A has 17% of the Impurity D content of Sample B.

The equivalent figure derived from the skimmed

peak area measurements is B/1%: a substantial

difference.

Skimmed integration is an operation which is

usually difficult to reproduce: different software

packages or human chromatographers may choose

different start and end points on the trace. The

second derivative amplitude is more specific since
Fig. 1. Typical chromatogram of the AQ4N and Impurity D

peak in Sample B.

Fig. 2. Expanded chromatogram and second derivative of the

Impurity D peak in Sample B. (The arrow indicates the

maximum used to establish second derivative amplitude.)

Fig. 3. Mean values (with S.D. error bars) and best fit lines for

the experimentally determined values of the skimmed peak

areas and second derivative amplitudes of Impurity D from

Sample A:B mixtures.
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it is an easier parameter to define. The technique

of using a second derivative curve to assist in the

selection of start and end points for skimmed

integration [11] would not be applicable to this

data since it requires both second derivative

maxima from the rider peak to be observable.
The experimental second derivative data gives a

higher S.D. than the peak area data, but this is to

be expected since the increased resolution of

derivatized experimental data is at the expense of

exaggerated experimental noise.

In order to establish a curved baseline in the

absence of a drug sample completely devoid of

Impurity D, the peaks would have to be fitted to

known equations [6]. The use of the actual

experimental data to determine the correct curved

baseline by a simple linear regression is discussed
below.

The good linear fit for the experimental second

derivative data is mirrored by a similar result for

the theoretical results, where the correlation coef-

ficient is 1.000. This indicates that, to a reasonable

approximation, the amplitude of the second deri-

vative is proportional to Impurity D concentra-

tion. However, the negative regression intercept
shows that the main peak is distorting the second

derivative signal of the rider peak. This concurs

with previous work [10�/12].

3.2. Extrapolation of experimental data to obtain

‘pure’ drug curve

Since Samples A and B have significantly

different contents of Impurity D, it is possible to

extrapolate by linear regression of the available

chromatograms to a point where the Impurity D
content is zero, thus providing a chromatographic

baseline. Two key operations are required for this

process; firstly the correct alignment of the chro-

matograms and, secondly, assigning the Impurity

D content of the sample mixtures. The latter

problem is addressed by the assertion that,

although the exact concentration of Impurity D

cannot be deduced, the relative concentration is
proportional to the second derivative amplitude.

The alignment of the chromatograms in the time

axis was carried out using two ‘markers’; the

second derivative maximum for the Impurity D

peak and the steep tail gradient of the main drug.

The alignment was carried out manually within the

spreadsheet. There was no restriction on the

Fig. 4. Skimmed peak areas and second derivative amplitudes

(with best fit lines) against theoretical peak area parameter (A )

for the rider peak.

Table 2

Parameters from the linear regression of the skimmed peak area and second derivative for experimental and theoretical results

Regression

parameter

Skimmed peak area

(experimental)

Second derivative amplitude

(experimental)

Skimmed peak area

(theoretical)

Second derivative amplitude

(theoretical)

Slope 258 0.0219 0.173 15.0

Intercept �/1337 0.473 �/1.85 45.4

S.D. (slope) 9.49 0.000526 0.0130 0.130

S.D. (intercept) 577 0.0322 0.431 4.31

Standard error 1290 0.072 0.411 4.10

No. data points 15 15 5 5

r2 0.983 0.993 0.983 1.000
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displacement of the chromatograms along the time

axis while alignment was being carried out using

the second derivative maximum ‘marker’. How-

ever, the alignment carried out using the tail

gradient of the main peak was assessed visually

and was considered as ‘fine tuning’. Accordingly,

this latter alignment operation was restricted to

displacement by three data points (the equivalent

of 0.015 min). After alignment, the replicate

chromatographic traces from each sample were

averaged.

The linear regression of the averaged chromato-

grams was carried out by assigning the mean

second derivative amplitude for each sample

mixture (@B
2(AMP)) of the second derivative as the

x abscissa, and the absorbance of the traces at a

fixed time point, T , (AB
T) as the y ordinate. Since

five sample mixtures were used (B�/0, 25, 50, 75

and 100) the procedure defines five data points for

each time point T : (@0
2(AMP), A0

T ), (@25
2(AMP),

A25
T ). . .(@100

2(AMP), A100
T ). The resulting intercept at

time T where the x ordinate (@2(AMP)), and

accordingly the Impurity D concentration, are

zero gives the absorbance of the baseline chroma-

togram at time T . Repeating this procedure for all

the relevant time points (or values of T ) gives the

baseline chromatogram required. This process

predicts a curved baseline using the experimental

data, without requiring peak deconvolution.

The results for the regression are shown in Fig. 5

together with the correlation coefficients of the

analyses at the different time points. The correla-

tion coefficient values show that the linear fit for

the Impurity D peak to the second derivative

amplitude is good. On either side of the Impurity

D peak the correlation coefficients value drops,

since the relationship between the chromatograms

is random. The peak areas of Impurity D as given

by the skimmed integration process and above

extrapolated baseline are shown in Table 3. The

equivalent results for the theoretical peak complex

are shown in Table 4. The comparison of the

skimmed integration with the extrapolated base-

line figures shows that the latter approach is

several times more accurate, due to the use of a

curved baseline. Although the extrapolation

method requires several samples, these can be

Fig. 5. Aligned chromatograms, baseline chromatogram (intercept) and correlation coefficient (RSQ) for the extrapolation (linear)

regression analysis.

Table 3

Peak area from baseline extrapolation and skimmed integration

algorithms

Sample

mixture

Peak area from baseline

extrapolation

Peak area from skim

integration

100B:0A 77 433 25 712

75B:25A 61 236 17 463

50B:50A 48 462 10 613

25B:75A 30 122 3845

0B:100A 12 880 242
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prepared by combination as long as the original

samples contain significantly different rider con-

centration.

The errors shown in the theoretical results
originate from the use of the second derivative

amplitude as the x ordinate in the regression,

which, as highlighted above, has only an approxi-

mately linear response to rider concentration. An

equivalent extrapolation analysis was also carried

out using rider peak area as the x abscissa (data

not shown). In this analysis the theoretical peak

areas could all be recovered to within 99.5% of
their original values. This indicates that the errors

for the baseline extrapolation shown in parenthesis

in Table 4 originate from the use of the second

derivative amplitude as the x ordinate in the

regression.

3.3. Peak area prediction using only derivative

chromatograms

Additional studies were carried out to examine

the possibility of reconstructing the Impurity D

peak using a single Gaussian function and its

associated second order derivative functions. The

s value of a Gaussian function can be derived

readily from its second order curve. The maximum

amplitude of the second order curve is a function

of the s value and the overall Gaussian peak area,
hence the latter can be predicted. For the theore-

tical peak complex models described above, the

correct peak area could be calculated for all five

rider peak areas to within 99.5% of the actual

value. However, for the experimental data the

predicted values of s from replicate sample injec-

tions varied widely due to experimental noise. In
the second derivative Gaussian function the actual

peak area is proportional to s3 and so any errors

in the latter are magnified during the subsequent

mathematical processing. Although theoretically a

powerful technique, this method did not assist in

predicting experimental peak area.

4. Conclusion

The use of second derivative amplitudes has

greatly assisted in the characterisation of an

unknown impurity (Impurity D) which elutes as
a ‘rider’ on the tail of AQ4N during an HPLC

analysis. An estimate of peak area was obtained by

using a simple linear regression procedure. The

results have shown the futility of using skimmed

integration in this situation and the accuracy of the

second derivative approach. All the calculations

were carried out in a widely used spreadsheet

program and avoided the use of complex algo-
rithms and statistical packages.

Although the use of second derivative chroma-

tographic traces is not a replacement for the

development of an HPLC method with sufficient

resolving power it does provide a useful alternative

for situations where ‘rider’ peaks occur.
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